Word Representation

Tanmoy Chakraborty
Associate Professor, lIT Delhi
https://tanmoychak.com/

Slides are adopted from the Stanford course ‘NLP with DL’ by C. Manning & the book ‘Speech and Language Processing’ by D. Jurafsky and J. H. Martin

https://tanmoychak.com/

¥ Chapter 03. Word Embedding
3.1 Distributional Hypothesis
V¥ 3.2 Vector Semantics
3.2.1 Defining and Measuring Semantic Similarity
¥ 3.3 Types of Word Embedding
3.3.1 Frequency-Based Embeddings
3.3.2 Word2Vec
3.3.3 Global Vectors for Word Representation
3.3.4 FastText
3.4 Bias in Word Embedding
3.5 Limitations of Word Embedding Methods
3.6 Applications of Word Embeddings

3.7 Summary

INTRODUCTION TO

LARGE LANGUAGE
MODELS

Generative Al for Text

Tanmoy Chakraborty

»

'BREAKING

:‘/5’ .

DeepSeek-R1-Zero is a
model trained via large-
scale reinforcement
learning (RL) without
supervised fine-tuning
(SFT) as a preliminary step.
To further enhance
reasoning performance,
DeepSeek-R1
incorporates multi-stage
training and cold-start
data before RL.

DeepSeek Al releases SOTA reasoning
model DeepSeek-R1 !!

&' cdeepseek

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via

Reinforcement Learning

DeepSeek-Al

DeepSeek-R1 achieves performance

comparable to OpenAl-01-1217 on
math, code, and reasoning tasks.

Released on
January 20, 2025

DeepSeek Blog

DeepSeek-R1 uses Group
Relative Policy
Optimization (GRPO) as

the RL algorithm for training.

Itis based on the
DeepSeek-V3 model,
which is a Mixture-of
Experts (MoE) model which
adopts Multi-head Latent
Attention (MLA) to achieve

efficient inference and cost-

effective training.

https://api-docs.deepseek.com/news/news250120

‘Meaning’ of a Word

To perform language modelling effectively, it is essential for the model to somehow capture
the meaning of each word.

Definition: meaning (Webster dictionary)
* Theideathatis represented by a word, phrase, etc.
* The ideathat a person wants to express by using words, signs, etc.
* Theideathatis expressed in a work of writing, art, etc.

Tanmoy Chakraborty

LLMs: Introduction and Recent Advances

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Need for Word Representation

For language modeling:

* We need effective representation of words
* The representation must somehow encapsulate the word meaning

LLMs: Introduction and Recent Advances \ : Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Representing Words as Discrete Symbols

In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel —a localist representation

Means one 1, the rest Os

v
Such symbols for words can be represented by one-hot vectors:
motel=[000000000010000]
hotel=[000000010000000]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

LLMs: Introduction and Recent Advances 15 S@ Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Problem with Words as Discrete Symbols

Example: in web search, if a user searches for “Delhi motel”, we would also like to match
documents containing “Delhi hotel”
But:
motel=[000000000010000]
hotel=[000000010000000]
* These two vectors are orthogonal

* There is no natural notion of similarity for one-hot vectors!

* Solution:
* Could try to rely on WordNet’s list of synonyms to get similarity?

_I Tanmoy Chakraborty

LLMs: Introduction and Recent Advances \ IT.CS@

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Use Existing Thesauri or Ontologies like WordNet

WordNet 3.0

* A hierarchically organized lexical database

* Online thesaurus + aspects of a dictionary
* Some other languages available or under development

* (Arabic, Finnish, German, Portuguese...)

Noun 117,798
Verb 11,529
Adjective 22,479
Adverb 4,481

Adapted from NLP Lectures by Daniel Jurafsky

LLMs: Introduction and Recent Advances r- Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Use Existing Thesauri or Ontologies like WordNet

How is “sense” defined in WordNet?

* Using the synset (synonym set), the set of near-synonyms, instantiates a sense or
concept, with a gloss.

* Example:
* chump as a noun with the gloss:
“a person who is gullible and easy to take advantage of”
* This sense of “chump” is shared by 9 words:
chump’, fool?, gull', mark®, patsy’, fall guy’, sucker’, soft touch', mug?

* Each of these senses have this same gloss
* (Not every sense; sense 2 of gull is the aquatic bird)

Adapted from NLP Lectures by Daniel Jurafsky

LLMs: Introduction and Recent Advances CS&' Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Use Existing Thesauri or Ontologies like WordNet

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
° Example: Display options for sense: (gloss) "an example sentence”

)). Noun
Senses of ‘bass’:
n) bass (the lowest part of the musical range)
n) bass, bass part (the lowest part in polyphonic music)
n) bass, basso (an adult male singer with the lowest voice)
n) sea bass bass bass (the lean flesh of a saltwater fish of the family Serranidae)
) freshwater bass, bass (any of various North American freshwater fish with
n fl
)
)
)

If'rJ |90 | |0

:
: (
:
: (
2 (n

an flesh (especially of the genus Micropterus))
. (n) bass, bass voice, basso (the lowest adult male singing voice)
: (n) bass (the member with the lowest range of a family of musical instruments)

H

e S: (n) bass (nontechnical name for any of numerous edible marine and freshwater
splny-fnned fishes)

Adjective

S: (adj) bass, deep (having or denoting a low vocal or instrumental range) "a deep
voice"; " bass voice is lower than a baritone voice"; "a bass clarinet”

Adapted from NLP Lectures by Daniel Jurafsky

LLMs: Introduction and Recent Advances LCS&' Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Drawbacks of Thesaurus-based Approaches

* A useful resource but missing nuance
* e.g., “proficient” is listed as a synonym for “good”: this is only correct in some contexts

* Also, WordNet lists offensive synonyms in some synonym sets without any coverage of the
connotations or appropriateness of words

* Missing new meanings of words
* e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
* Impossible to keep up-to-date!

* Subjective

* Requires human labor to create and adapt

LLMs: Introduction and Recent Advances ; VETITALER) e G B

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Representing Words by Their Context

Distributional semantics: A word’s meaning is given by the words that frequently appear
close-by.

“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

* When a word w appears in a text, its context is the set of words that appear nearby

(within a fixed-size window).
* We can have many contexts of w to build up a representation of w
e ...government debt problems turning into banking crises as happened in 2009...
* ...saying that Europe needs unified banking regulation to replace the hodgepodge...

* ...India hasjust given its banking system a shot in the arm...

* These context words will represent banking

LLMs: Introduction and Recent Advances LCS&' Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Count-based Methods

t@% LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Use Co-occurrences for Word Similarity

The Term-Context matrix (or, word-word matrix)

* Each cell: number of times the row (target) word and the column (context) word co-occur
In some context in the corpus
* Generally, smaller contexts are used, like:
* Paragraph
* Window of 10 words

* Each word is acount vectorin NV: a row below (V: size of vocabulary)

aardvark computer data pinch result sugar

apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4

0
Adapted from NLP Lectures by Daniel Jurafsky

LLMs: Introduction and Recent Advances r- Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sample Contexts: 20 words (Brown corpus)

* equal amount of sugar, a sliced lemon, a tablespoonful of apricot preserve orjam, a
pinch each of clove and nutmeg,

* on board for their enjoyment. Cautiously she sampled her first pineapple and another
fruit whose taste she likened to that of

» of arecursive type well suited to programming on the digital computer. In finding the
optimal R-stage policy from that of

* substantially affect commerce, for the purpose of gathering data and information
necessary for the study authorized in the first section of this

Adapted from NLP Lectures by Daniel Jurafsky

LLMs: Introduction and Recent Advances > & Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Use Co-occurrences for Word Similarity

The Term-Context matrix (or, word-word matrix)

* Two words are similar in meaning if their context vectors are similar

aardvark computer data pinch result sugar

apricot 0) 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

Adapted from NLP Lectures by Daniel Jurafsky

@% LLMs: Introduction and Recent Advances : VBT el 99ty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Should We Use Raw Counts?

* Raw word frequency is not a great measure of association between words
* It’s very skewed

* “the” and “of” are very frequent, but maybe not the most discriminative

* We’d rather have a measure that asks whether a context word is particularly informative
about the target word.

* For the term-document matrix:
* We generally use tf-idf instead of raw term counts.

LLMs: Introduction and Recent Advances ; VETITALER) e G B

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Term Frequency (tf)

tf, ;= count(t,d)
Instead of using raw count, we squash a bit:

tf, ;= log,,(count(t,d)+1)

@?% LLMs: Introduction and Recent Advances . Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Document Frequency (df)

df,is the number of documents t occurs in.

(note this is NOT collection frequency: total count across all documents)

Example: "Romeo" is very distinctive for one Shakespeare play:

Collection Frequency Document Frequency

Romeo 113 1
action 113 31

LLMs: Introduction and Recent Advances L | Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Inverse Document Frequency (idf)

. N
ldft — loglo (d_f>
[

N is the total number of documents
in the collection

LLMs: Introduction and Recent Advances

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 O
sweet 37 0

Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

What is a Document?

* Could be a play or a Wikipedia article

* But for the purposes of tf-idf, documents can be anything; we often call each paragraph a
document!

LLMs: Introduction and Recent Advances : Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Final tf-idf Weighted Value for a Word

Wt,d — tfnd X ldft

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3
AsYouLikeIt Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

LLMs: Introduction and Recent Advances L Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Drawbacks of Co-occurrence Matrix Approach

* Quadratic space needed

* Relative position and order of words not considered

@% LLMs: Introduction and Recent Advances Y o Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Low Dimensional Vectors

e Store only “important” information in fixed, low dimensional vector.

* Singular Value Decomposition (SVD) on co-occurrence matrix

« X isthe best rank k approximation to X, in terms of least squares
* Motel=[0.286, 0.792,-0.177,-0.107, 0.109, -0.542, 0.349, 0.271]

m r r m
] Vs, 0 \:
n = aUUU- - | r| S| v
| ‘ ‘ 0 .'sr :
X U S v’
m k k m
S Vi
. — nU]UJ:L__ L ’szsj_o . %
0 S,)
X U S v

LLMs: Introduction and Recent Advances ; VETITALER) e G B

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Drawbacks of SVD-based Approach

 Computational cost scales quadratically for n x m matrix: O (mn?) flops (when n<m)
* Hard to incorporate new words or documents

* Does not consider order of words

LLMs: Introduction and Recent Advances : | Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Prediction-based Methods

t@% LLMs: Introduction and Recent Advances > Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Word Embedding

e Dense vector

* Helps in learning less parameters
* May generalize better

* Can capture synonyms better

* car and automobile are synonyms; but have distinct dimensions

* A word with car as a neighbor and a word with automobile as a neighbor should
be similar, but are not

LLMs: Introduction and Recent Advances 15 @ Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Represent The Meaning of Word: Word2vec

Two basic neural network models:

e Continuous Bag of Word (CBOW): use a window of word to predict the middle word

» Skip-gram (SG): use a word to predict the surrounding words in window

INPUT PROJECTION OUTPUT INPUT PROJECTION QUTPUT

J wi(t-2)

w(t-1)

w(t-2)

wi(t-1)

SUM

H

w(t) w(t)

witT) w(t+1)

w(t+2)

w(t+2)

CBOW Skip-gram

f@% LLMs: Introduction and Recent Advances

Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Word2vec

* Instead of counting how often each word w occurs near “apricot”
* Train a classifier on a binary prediction task:

* |s wlikely to show up near "apricot™?
* We don’t actually care about this task
* But we'll take the learned classifier weights as the word embeddings
* Bigidea: Self-supervision

* A word c that occurs near apricot in the corpus cats as the gold "correct answer" for supervised
learning

* No need for human labels
* Bengio et al. (2003); Collobert et al. (2011)

Adapted from NLP Lectures by Daniel Jurafsky

LLMs: Introduction and Recent Advances

Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Approach: Predict if Candidate Word ‘c’ is a "neighbor"

Treat the target word t and a neighboring context word ¢ as positive examples.
Randomly sample other words in the lexicon to get negative examples

Use logistic regression to train a classifier to distinguish those two cases

W bhb =

Use the learned weights as the embeddings

LLMs: Introduction and Recent Advances ; VETITALER) e G B

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

... lemon, a [tablespoon of apricot jam, a] pinch...
Cq C, target C3 ©C4

@?% LLMs: Introduction and Recent Advances : i Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Skip-Gram Classifier

(assuming a +/- 2 word window)

... lemon, a [tablespoon of apricot jam, a] pinch...
C,4 C, target C3 C,
* Goal: Train a classifier, that, given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

assigns each pair a probability:
P(+|w, c)
P(=lw,c)=1-P(+|w,c)

LLMs: Introduction and Recent Advances I Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Similarity is Computed Using Dot Product

* Remember: Two vectors are similar if they have a high dot product
* Cosineisjustanormalized dot product

e Similarity(w,c) xw - c

* We’ll need to normalize to get a probability
* Cosineisn't a probability either

LLMs: Introduction and Recent Advances Y o Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Turning Dot Products into Probabilities

e Sim(w,C)=wW - C
* To turn this into a probability
* We'll use the sigmoid function, as in logistic regression:

P(+|w,c) = o(c-w)= 1+exp1(—c-w)
P(—|w,c) = 1—P(+|w,c)
1
= o(—cw)= I +exp(c-w)

LLMs: Introduction and Recent Advances

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

How Skip-gram Classifier computes P(+|w, c)

1
1 4+exp(—c-w)

* This is for one context word, but we have lots of context words.
* We'll assume independence and just multiply them:

P(+|w,c1.) = H o(ci-w)
i=1

P(+|w,c) = o(c-w)=

L
logP(+|w,c1.) = Zlog o(c;i-w)
i=1

LLMs: Introduction and Recent Advances

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Skip-gram Classifier: Summary

* A probabilistic classifier, given
* atesttargetword w
* its context window of L words c,;

* Estimates probability that w occurs in this window based on similarity of w (embeddings)
to c,., (embeddings).

* To compute this, we just need embeddings for all the words.

LLMs: Introduction and Recent Advances Y o Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

The Embeddings We’ll Need: A Set for w, A Set for ¢

1.d
aardvark [eee] 1 \

apricot [eee

- W target words

H _ zebra [ee9 |V|)

" aardvark [see |V|+1\

apricot [eee

- C context & noise
words

zebra [eee 2V J

LLMs: Introduction and Recent Advances IT'CS@ Tanmoy Chakraborty

uun nnnnnnnnn

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Word2vec: Learning the
Embeddings

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

... lemon, a[tablespoon of apricot jam, a] pinch ...
C, C, target C3 C,

|

positive examples +

t C For each positive example we'll
apricot tablespoon grab k negative examples, sampling
apricot of by frequency

apricot jam

apricot a

LLMs: Introduction and Recent Advances : i Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

... lemon, a[tablespoon of apricot jam, a] pinch ...

C, C, target C3 C,

positive examples + I negative examples -
t C t C t C
apricot tablespoon apqcot aardvark apqcot seven

: apricot my apricot forever
apricot of , .

- - apricot where apricot dear
apricot jam , , , ,

. apricot coaxial apricot 1if
apricot a

LLMs: Introduction and Recent Advances ; VETITALER) e G B

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Choosing Negative Examples

count(w)“
>, count(w)

Setting o = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Py(w) > P(w).

Py(w) =

9975
P(a) = .99 Py(a) = 9975 + 0175 — 97
Falb) = o975 o175 =0

@?% LLMs: Introduction and Recent Advances I Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Word2vec: How to Learn Word Vectors

* Given the set of positive and negative training instances, and an initial set of embedding
vectors
* The goal of learning is to adjust those word vectors such that we:

* Maximize the similarity of the target word, context word pairs (w, C
the positive data

0os) drawn from

* Minimize the similarity of the (w, c_..) pairs drawn from the negative data.

neg)

LLMs: Introduction and Recent Advances Y o Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Loss Function for One w With ¢ C C

pos? ~negl ***~negk

* Maximize the similarity of the target with the actual context words, and minimize the
similarity of the target with the k negative sampled non-neighbor words.

k
Lcg = —log P(—I_lwacpos)HP(Wacnegi)]
i=1

- k
= — 10gP(+|W,Cp0s)+Zlogp(_|w7cnegi)]
i i=1

= — lOgP |W Cpos Zlog 1_ |W Cneg;))]

i k
= — |logo(cpos-w) + Zlog O (—Cpeg, w)]
! i=1

LLMs: Introduction and Recent Advances Y o Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Learning the Classifier

* How to learn?
* Stochastic gradient descent!

* We’ll adjust the word weights to
* make the positive pairs more likely
* and the negative pairs less likely,
over the entire training set.

LLMs: Introduction and Recent Advances

W 4

(aardvark [eese]
move apricot and jam closer,
apricot [@@elw| ~ = < . increasing . * W
) \
. |
“ ’ (11 H . y
! ...apncotjam...
k zebra (@9 ' /’ .
. “ .
(aardvark jeee /’ B ', move apricot and matrix apart
jam [®esc__|¥ . : decreasing C, .oy * W
o matrix @9 C,. ./ |* -~ "'
Tolstoy [®®8) C.po|w- - - MOVE a,or/cot_and Tolstoy apart
decreasing €., * W
zebra |[eee

Tanmoy Chakraborty

b

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Reminder: Gradient Descent

* Ateachstep
* Direction: We move in the reverse direction from the gradient of the loss function

* Magnitude: we move the value of this gradient % L(f (x; w), y) weighted by a learning rate 1)

* Higher learning rate means move w faster

d
witl = wt — U%L(f(xi w),y)

LLMs: Introduction and Recent Advances : Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

The Derivatives of The Loss Function

k

Leg =~ |10g0(Cpos W) + 3 1080 (—Cpeg, - W)
=1

pos
JdL
8cCE = |O(Cneg - w)|w
neg
dL k
av(i/E - [G(Cpos W) — 1]Cpos + Z[G(Cnegi ‘W)]Cnegi
i=1

LLMs: Introduction and Recent Advances

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Update Equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates

Cgo_sl — C;OS — 1 [G(C;)os ' Wt) R 1]Wt
1
Ciz—gg — Cffteg —1n [G(C;eg ' Wt)]wt
_ L _
wth = w—n [0 (Cpos - W') — 1]cpos + Z[G(Cnegi -wt)]cnegi
_ i=1 i

LLMs: Introduction and Recent Advances

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Two Sets of Embeddings

Skip-gram learns two sets of embeddings:
1. Target embeddings matrix W
2. Context embedding matrix C

It's common to just add them together, representing i-th word as the vector W[i] + Cl[i]

t@% LLMs: Introduction and Recent Advances L | Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Summary: How to Learn Word2vec (Skip-gram)
Embeddings

e Start with Vrandom d-dimensional vectors as initial embeddings

* Train a classifier based on embedding similarity
* Take a corpus and take pairs of words that co-occur as positive examples
* Take pairs of words that don't co-occur as negative examples

* Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier
performance

* Throw away the classifier code and keep the embeddings

LLMs: Introduction and Recent Advances I Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Some Tricks

* Sub-sampling Frequent Words

There are two “problems” with common words like “the”:

1. When looking at word pairs, (“fox”, “the”) doesn’t tell us
much about the meaning of “fox”. “the” appears in the
context of pretty much every word.

2. We will have many more samples of (“the”, ...) than we
need to learn a good vector for “the”.

Source Text

B

brown |fox jumps

The

brown |fox | jumps

The quick- fox|jumps

over

over

over

The| quick

brown - jumps

over

P(w;) is the probability of keeping the word:

http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

LLMs: Introduction and Recent Advances

the

the

the

the

lazy dog.

lazy dog.

lazy dog.

lazy dog.

Tanmoy Chakraborty

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

Some Tricks

Graph for (sqrt(x/0.001)+1)*0.001/x Training
i SUb-Sampllng Frequent Words +| o € 0.002537675 y:1.02180467 Samples
FiE

(the, quick)
(the, brown)
There are two “problems” with common words lik (|
quick, the
(quick, brown)

1. When looking at word pairs, (“fox”, “the”) does (quick, fox)

much about the meaning of “fox”. “the” appeal
context of pretty much every word.

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

. 1] 9 (fox, quick)
2. Wewillhave many more samples of (the”,)1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 (fox, brown)

need to learn a good vector for “the”. ' ' ' ' | ' ' ' ' | (fox, jumps)

(fox, over)

P(w;) is the probability of keeping the word:

http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

LLMs: Introduction and Recent Advances LCS&' Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

Sub-sampling Frequent Words

* If we have a window size of 10, and we remove a specific instance of “the” from our text:

* As we train on the remaining words, “the” will not appear in any of their context windows.
* We’ll have 10 fewer training samples where “the” is the input word.

Here are some interesting points in this function (again this is using the default
sample value of 0.001).

e P(w;) = 1.0 (100% chance of being kept) when z(w;) <= 0.0026.
© This means that only words which represent less than 0.26% of the
total words will be subsampled.

* P(w;) = 0.5 (50% chance of being kept) when z(w;) = 0.00746.
e P(w;) = 0.033 (3.3% chance of being kept) when z(w;) = 1.0.
o That is, if the corpus consisted entirely of word w;, which of course is
ridiculous.

LLMs: Introduction and Recent Advances L Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Some Interesting Results
Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

—_ T
z [wp — wq + we|

man:woman :: king:?

+ king [0.300.70] 07 . queen
. . king
man [0.200.20]
05
+ woman [0.600.30]
woman
0.25 man
queen [0.700.80]
0
0 0.25 05 0.75 1

@% LLMs: Introduction and Recent Advances : i Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Word Analogies

Chinas«
Beijing
1.5 | Russia« i
Japarx
Moscow
1 L -
Turkey: Ankara Tokyo
05 1
Poland«
0 - Germany« 7
France’ Warsaw

w Berlin

-0.5 Italy< Paris -
--=—»Athens
Greece« r
1 | Spain¢ Rome 7]
* Madrid

-1.5 | Portugal sLisbon 7

_2 1 1 1 1 | 1 1
-2 -15 -1 -0.5 0 0.5 1 1.5 2

@?% LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Problems of Word2vec

The cat sat on the mat

Word2vec can’t capture the information like:
* |Is“The” a special context of the words “cat” and “mat”?

Or

* Is“The” just a stopword?

@% LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Problems of Word2vec

* Word2Vec can’t handle unknown words — words appearing in a test corpus but were
unseen in the training corpus

LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

https://fasttext.cc/

fasttext embedding — Subword embedding

Each word is represented by itself plus a bag of constituent n-grams, with special
boundary symbols ‘<’ and >’ added to each word.

For example, with n = 3 the word where would be represented by the sequence plus the
character n-grams:

where, <wh, whe, her, ere, re>

Skip-gram is learned for each constituent n-gram

where is represented by the sum of all of the embeddings of its constituent n-grams.

Unknown words can then be presented only by the sum of the constituent n-grams

LLMs: Introduction and Recent Advances > Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4: ‘Meaning’ of a Word
	Slide 5: Need for Word Representation
	Slide 6: Representing Words as Discrete Symbols
	Slide 7: Problem with Words as Discrete Symbols
	Slide 8: Use Existing Thesauri or Ontologies like WordNet
	Slide 9: Use Existing Thesauri or Ontologies like WordNet
	Slide 10: Use Existing Thesauri or Ontologies like WordNet
	Slide 11: Drawbacks of Thesaurus-based Approaches
	Slide 12: Representing Words by Their Context
	Slide 13: Count-based Methods
	Slide 14: Use Co-occurrences for Word Similarity
	Slide 15: Sample Contexts: 20 words (Brown corpus)
	Slide 16: Use Co-occurrences for Word Similarity
	Slide 21: Should We Use Raw Counts?
	Slide 22: Term Frequency (tf)
	Slide 23: Document Frequency (df)
	Slide 24: Inverse Document Frequency (idf)
	Slide 25: What is a Document?
	Slide 26: Final tf-idf Weighted Value for a Word
	Slide 27: Drawbacks of Co-occurrence Matrix Approach
	Slide 28: Low Dimensional Vectors
	Slide 29: Drawbacks of SVD-based Approach
	Slide 30: Prediction-based Methods
	Slide 31: Word Embedding
	Slide 32: Represent The Meaning of Word: Word2vec
	Slide 33: Word2vec
	Slide 34: Approach: Predict if Candidate Word ‘c’ is a "neighbor"
	Slide 35: Skip-Gram Training Data
	Slide 36: Skip-Gram Classifier
	Slide 37: Similarity is Computed Using Dot Product
	Slide 38: Turning Dot Products into Probabilities
	Slide 39: How Skip-gram Classifier computes P(+|w, c)
	Slide 40: Skip-gram Classifier: Summary
	Slide 41: The Embeddings We’ll Need: A Set for w, A Set for c
	Slide 42: Word2vec: Learning the Embeddings
	Slide 43: Skip-Gram Training Data
	Slide 44: Skip-Gram Training Data
	Slide 45: Choosing Negative Examples
	Slide 46: Word2vec: How to Learn Word Vectors
	Slide 47: Loss Function for One w With cpos , cneg1 ...cnegk
	Slide 48: Learning the Classifier
	Slide 49: Reminder: Gradient Descent
	Slide 50: The Derivatives of The Loss Function
	Slide 51: Update Equation in SGD
	Slide 52: Two Sets of Embeddings
	Slide 53: Summary: How to Learn Word2vec (Skip-gram) Embeddings
	Slide 54: Some Tricks
	Slide 55: Some Tricks
	Slide 56: Sub-sampling Frequent Words
	Slide 57: Some Interesting Results
	Slide 58: Word Analogies
	Slide 59: Problems of Word2vec
	Slide 60: Problems of Word2vec
	Slide 61: fasttext embedding – Subword embedding

